New York University

School of Continuing Education

Information Technologies Institute

Course Title:	Java for C++ Programmers		Course Number: X.52.9269

Instructor: Nigel Lui					Session: 3	Date: 6/4/1998

Java I/O and Socket Programming

The String and StringBuffer Classes

The java.lang package contains two string classes: String and StringBuffer. You've already seen the String class on several occasions in this tutorial. You use the String class when you are working with strings that cannot change. StringBuffer, on the other hand, is used when you want to manipulate the contents of the string on the fly.

The reverseIt() method in the following code uses both the String and StringBuffer classes to reverse the characters of a string. If you have a list of words, you can use this method in conjunction with a sort program to create a list of rhyming words (a list of words sorted by ending syllables). Just reverse all the strings in the list, sort the list, and reverse the strings again.

Listing 3.1

1

2

3

4

5

6

7

8

9

10� public class ReverseString {

 public static String reverseIt(String source) {

 int i, len = source.length();

 StringBuffer dest = new StringBuffer(len);

 for (i = (len - 1); i >= 0; i--)

 dest.append(source.charAt(i));

 return dest.toString();

 }

 }��

The reverseIt() method accepts an argument of type String called source that contains the string data to be reversed. The method creates a StringBuffer, dest, the same size as source. It then loops backwards over all the characters in source and appends them to dest, thereby reversing the string. Finally, the method converts dest, a StringBuffer, to a String.

In addition to highlighting the differences between Strings and StringBuffers, this lesson illustrates several features of the String and StringBuffer classes: creating Strings and StringBuffers, using accessor methods to get information about a String or StringBuffer, modifying a StringBuffer, and converting one type of string to another.

Why Two String Classes?

The Java development environment provides two classes that store and manipulate character data: String, for constant strings, and StringBuffer, for strings that can change.

You use Strings when you don't want the value of the string to change. For example, if you write a method that requires string data and the method is not going to modify the string in any way, use a String object. Typically, you'll want to use Strings to pass character data into methods and return character data from methods The reverseIt() method takes a String argument and returns a String value.

The StringBuffer class provides for strings that will be modified; you use StringBuffers when you know that the value of the character data will change. You typically use StringBuffers for constructing character data, as in the reverseIt method.

Because they are constants, Strings are typically cheaper than StringBuffers and they can be shared. So it's important to use Strings when they're appropriate.

Creating a StringBuffer

The constructor method used by reverseIt() to initialize the dest requires an integer argument indicating the initial size of the new StringBuffer.

StringBuffer(int length);

ReverseIt() could have used StringBuffer's default constructor that leaves the buffer's length undetermined until a later time. However, it's more efficient to specify the length of the buffer if you know it, instead of allocating more memory every time you append a character to the buffer.

Converting Strings to Numbers

The String class itself does not provide any methods for converting a String to a floating point, integer, or other numerical type. However, four of the "type wrapper" classes (Integer, Double, Float, and Long) provide a class method named valueOf that converts a String to an object of that type. Here's a small, contrived example of the Float class's valueOf():

String piStr = "3.14159";

Float pi = Float.valueOf(piStr);

The Standard I/O Streams

The concept of standard input and output streams is a C library concept that has been assimilated into the Java environment. There are three standard streams, all of which are managed by the java.lang.System class:

Standard input -- referenced by System.in

Used for program input, typically reads input entered by the user.

Standard output -- referenced by System.out

Used for program output, typically displays information to the user.

Standard error -- referenced by System.err

Used to display error messages to the user.

Standard Input Stream

The System class provides a stream for reading text -- the standard input stream.

Standard Output and Error Streams

Probably the most often used items from the System class are the standard output and standard error streams, which you use to display text to the user. The standard output stream is typically used for command output, to display the results of a command to the user. The standard error stream is typically used to display any errors that occur when a program is running.

The print, println, and write Methods

Both standard output and standard error derive from the PrintStream class. Thus, you use one of PrintStream's three methods to print text to the stream: print, println, and write.

The print and println methods are essentially the same; they both write their String argument to the stream. The one difference between the two methods is that println appends a newline character to the end of its output while print does not. In other words, this

System.out.print("Duke is not a penguin!\n");

is equivalent to this

System.out.println("Duke is not a penguin!");

Notice the extra \n in the first method call; it's the two-character code for a newline character. println automatically appends a newline character to its output.

The write method is less frequently used than either of the print methods, and is used to write bytes to the stream. Use write to write non-ASCII data.

Arguments to print and println

The print and println methods both take a single argument. The argument may be one of any of the following data types: Object, String, char[], int, long, float, double, and boolean. In addition, there's an extra version of println that takes no arguments and just prints a newline to the stream.

Printing Objects of Different Data Types

The following program uses println to output data of various types to the standard output stream.

	Listing 3.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22�public class DataTypePrintTest {

 public static void main(String[] args) {

 Thread objectData = new Thread();

 String stringData = "Java Mania";

 char[] charArrayData = { 'a', 'b', 'c' };

 int integerData = 4;

 long longData = Long.MIN_VALUE;

 float floatData = Float.MAX_VALUE;

 double doubleData = Math.PI;

 boolean booleanData = true;

 System.out.println(objectData);

 System.out.println(stringData);

 System.out.println(charArrayData);

 System.out.println(integerData);

 System.out.println(longData);

 System.out.println(floatData);

 System.out.println(doubleData);

 System.out.println(booleanData);

 }

}��

 The program listed above produces this output:

 Thread[Thread-4,5,main]

 Java Mania

 abc

 4

 -9223372036854775808

 3.40282e+38

 3.14159

 true

Notice that you can print an object--the first println method call prints a Thread object and the second prints a String object. When you use print or println to print an object, the data printed depends on the type of the object. In the example, printing a String object yields the contents of the String. However, printing a Thread

yields a string of this format:

ThreadClass[name,priority,group]

What's an Exception and Why Do I Care?

Definition: An exception is an event that occurs during the execution of a program that disrupts the normal flow of instructions.

Many kinds of errors can cause exceptions--problems ranging from serious hardware errors, such as a hard disk crash, to simple programming errors, such as trying to access an out-of-bounds array element. When such an error occurs within a Java method, the method creates an exception object and hands it off to the runtime system. The exception object contains information about the exception, including its type and the state of the program when the error occurred. The runtime system is then responsible for finding some code to handle the error. In Java terminology, creating an exception object and handing it to the runtime system is called throwing an exception.

After a method throws an exception, the runtime system leaps into action to find someone to handle the exception. The set of possible "someones" to handle the exception is the set of methods in the call stack of the method where the error occurred. The runtime system searches backwards through the call stack, beginning with the method in which the error occurred, until it finds a method that contains an appropriate exception handler. An exception handler is considered appropriate if the type of the exception thrown is the same as the type of exception handled by the handler. Thus the exception bubbles up through the call stack until an appropriate handler is found and one of the calling methods handles the exception. The exception handler chosen is said to catch the exception.

If the runtime system exhaustively searches all of the methods on the call stack without finding an appropriate exception handler, the runtime system (and consequently the Java program) terminates.

By using exceptions to manage errors, Java programs have the following advantages over traditional error management techniques:

Advantage 1: Separating Error Handling Code from "Regular" Code

Advantage 2: Propagating Errors Up the Call Stack

Advantage 3: Grouping Error Types and Error Differentiation

Advantage 1: Separating Error Handling Code from "Regular" Code

In traditional programming, error detection, reporting, and handling often lead to confusing spaghetti code. For example, suppose that you have a function that reads an entire file into memory. In pseudo-code, your function might look something like this:

Listing 3.3

1

2

3

4

5

6

7�readFile {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}��

At first glance this function seems simple enough, but it ignores all of these potential errors:

What happens if the file can't be opened?

What happens if the length of the file can't be determined?

What happens if enough memory can't be allocated?

What happens if the read fails?

What happens if the file can't be closed?

To answer these questions within your read_file function, you'd have to add a lot of code to do error detection, reporting and handling. Your function would end up looking something like this:

Listing 3.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29�errorCodeType readFile {

 initialize errorCode = 0;

 open the file;

 if (theFileIsOpen) {

 determine the length of the file;

 if (gotTheFileLength) {

 allocate that much memory;

 if (gotEnoughMemory) {

 read the file into memory;

 if (readFailed) {

 errorCode = -1;

 }

 } else {

 errorCode = -2;

 }

 } else {

 errorCode = -3;

 }

 close the file;

 if (theFileDidntClose && errorCode == 0) {

 errorCode = -4;

 } else {

 errorCode = errorCode and -4;

 }

 } else {

 errorCode = -5;

 }

 return errorCode;

}��

With error detection built in, your original 7 lines (in bold) have been inflated to 29 lines of code--a bloat factor of almost 400 percent. Worse, there's so much error detection, reporting, and returning that the original 7 lines of code are lost in the clutter. And worse yet, the logical flow of the code has also been lost in the clutter, making it difficult to tell if the code is doing the right thing: Is the file really being closed if the function fails to allocate enough memory? It's even more difficult to ensure that the code continues to do the right thing after you modify the function three months after writing it. Many programmers "solve" this problem by simply ignoring it--errors are "reported" when their programs crash.

Java provides an elegant solution to the problem of error management: exceptions. Exceptions enable you to write the main flow of your code and deal with the, well, exceptional cases elsewhere. If your read file function used exceptions instead of traditional error management techniques, it would look something like this:

Listing 3.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19�readFile {

 try {

 open the file;

 determine its size;

 allocate that much memory;

 read the file into memory;

 close the file;

 } catch (fileOpenFailed) {

 doSomething;

 } catch (sizeDeterminationFailed) {

 doSomething;

 } catch (memoryAllocationFailed) {

 doSomething;

 } catch (readFailed) {

 doSomething;

 } catch (fileCloseFailed) {

 doSomething;

 }

}��

Note that exceptions don't spare you the effort of doing the work of detecting, reporting, and handling errors. What exceptions do provide for you is the means to separate all the grungy details of what to do when something out-of-the-ordinary happens from the main logic of your program.

In addition, the bloat factor for error management code in this program is about 250 percent--compared to 400 percent in the previous example.

Advantage 2: Propagating Errors Up the Call Stack

A second advantage of exceptions is the ability to propagate error reporting up the call stack of methods. Suppose that the readFile method is the fourth method in a series of nested method calls made by your main program: method1 calls method2, which calls method3, which finally calls readFile.

Listing 3.6

1

2

3

4

5

6

7

8

9�method1 {

 call method2;

}

method2 {

 call method3;

}

method3 {

 call readFile;

}��

Suppose also that method1 is the only method interested in the errors that occur within readFile. Traditional error notification techniques force method2 and method3 to propagate the error codes returned by readFile up the call stack until the error codes finally reach method1 -- the only method that is interested in them.

Listing 3.7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26�method1 {

 errorCodeType error;

 error = call method2;

 if (error)

 doErrorProcessing;

 else

 proceed;

}

errorCodeType method2 {

 errorCodeType error;

 error = call method3;

 if (error)

 return error;

 else

 proceed;

}

errorCodeType method3 {

 errorCodeType error;

 error = call readFile;

 if (error)

 return error;

 else

 proceed;

}��

As you learned earlier, the Java runtime system searches backwards through the call stack to find any methods that are interested in handling a particular exception. A Java method can "duck" any exceptions thrown within it, thereby allowing a method further up the call stack to catch it. Thus only the methods that care about errors have to worry about detecting errors.

Listing 3.8

1

2

3

4

5

6

7

8

9

10

11

12

13�method1 {

 try {

 call method2;

 } catch (exception) {

 doErrorProcessing;

 }

}

method2 throws exception {

 call method3;

}

method3 throws exception {

 call readFile;

}��

However, as you can see from the pseudo-code, ducking an exception does require some effort on the part of the "middleman" methods. Any checked exceptions that can be thrown within a method are part of that method's public programming interface and must be specified in the throws clause of the method. Thus a method informs its callers about the exceptions that it can throw, so that the callers can intelligently and consciously decide what to do about those exceptions.

Note again the difference in the bloat factor and code obfuscation factor of these two error management techniques. The code that uses exceptions is more compact and easier to understand.

Advantage 3: Grouping Error Types and Error Differentiation

Often exceptions fall into categories or groups. For example, you could imagine a group of exceptions, each of which represents a specific type of error that can occur when manipulating an array: the index is out of range for the size of the array, the element being inserted into the array is of the wrong type, or the element being searched for is not in the array. Furthermore, you can imagine that some methods would like to handle all exceptions that fall within a category (all array exceptions), and other methods would like to handle specific exceptions (just the invalid index exceptions, please).

Because all exceptions that are thrown within a Java program are first-class objects, grouping or categorization of exceptions is a natural outcome of the class hierarchy. Java exceptions must be instances of Throwable or any Throwable descendant. As for other Java classes, you can create subclasses of the Throwable class and subclasses of your subclasses. Each "leaf" class (a class with no subclasses) represents a specific type of exception and each "node" class (a class with one or more subclasses) represents a group of related exceptions.

�

For example, in the following diagram, ArrayException is a subclass of Exception (a subclass of Throwable) and has three subclasses.

	Figure 3.1

Your First Encounter with Java Exceptions

The following error message is one of two similar error messages you will see if you try to compile the Listing 3.9, because the InputFile class contains calls to methods that throw exceptions when an error occurs:

Listing 3.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28�// Note: This class won't compile by design!

// See InputFileDeclared.java for a version of this

// class that will compile.

import java.io.*;

public class InputFile {

 private FileReader in;

 public InputFile(String filename) {

 in = new FileReader(filename);

 }

 public String getWord() {

 int c;

 StringBuffer buf = new StringBuffer();

 do {

 c = in.read();

 if (Character.isWhitespace((char)c))

 return buf.toString();

 else

 buf.append((char)c);

 } while (c != -1);

	return buf.toString();

 }

}��

InputFile.java:11: Warning: Exception java.io.FileNotFoundException must be caught, or it must be declared in throws clause of this method.

in = new FileReader(filename);

 ^

The Java language requires that methods either catch or specify all checked exceptions that can be thrown within the scope of that method. If the compiler detects a method, such as those in InputFile, that doesn't meet this requirement, it issues an error message like the one shown above and refuses to compile the program.

Let's look at InputFile in more detail and see what's going on.

The InputFile class wraps a FileReader and provides a method, getWord, for reading a word from the current position in the reader.

The compiler prints the first error message because of the bold line in the above code listing. The bold line creates a new FileReader object and uses it to open a file whose name is passed into the FileReader constructor.

So what should the FileReader do if the named file does not exist on the file system? Well, that depends on what the program using the FileReader wants to do. The implementers of FileReader have no idea what the InputFile class wants to do if the file does not exist. Should the FileReader kill the program? Should it try an alternate filename? Should it just create a file of the indicated name? There's no possible way the FileReader implementers could choose a solution that would suit every user of FileReader. So, they punted, or rather, threw, an exception. If the file named in the argument to the FileReader constructor does not exist on the file system, the constructor throws a java.io.FileNotFoundException. By throwing an exception, FileReader allows the calling method to handle the error in whatever way is most appropriate for it.

As you can see from the code, the InputFile class completely ignores the fact that the FileReader constructor can throw an exception. However, as stated previously, the Java language requires that a method either catch or specify all checked exceptions that can be thrown within the scope of that method. Because the InputFile class does neither, the compiler refuses to compile the program and prints an error message.

In addition to the first error message shown above, you also see the following similar error message when you compile the InputFile class:

InputFile.java:15: Warning: Exception java.io.IOException must be caught, or it must be declared in throws clause of this method.

while ((c = in.read()) != -1) {

 ^

The InputFile class's getWord method reads from the FileReader that was opened in InputFile's constructor. The FileReader read method throws a java.io.IOException if for some reason it can't read from the file. Again, the InputFile class makes no attempt to catch or specify this exception. Thus you see the second error message.

At this point, you have two options. You can either arrange to catch the exceptions within the appropriate methods in the InputFile class, or the InputFile methods can "duck" and allow other methods further up the call stack to catch them. Either way, the InputFile methods must do something, either catch or specify the exceptions, before the InputFile class can be compiled.

Creating Your Own Exception Classes

When you design a package of Java classes that collaborate to provide some useful function to your users, you work hard to ensure that your classes interact well together and that their interfaces are easy to understand and use. You should spend just as much time thinking about and designing the exceptions that your classes throw.

Suppose you are writing a linked list class that you're planning to distribute as freeware. Among

other methods, your linked list class supports these methods:

 objectAt(int n)

 Returns the object in the nth position in the list.

 firstObject

 Returns the first object in the list.

 indexOf(Object n)

 Searches the list for the specified Object and returns its position in the list.

What Can Go Wrong?

Because many programmers will be using your linked list class, you can be assured that many will misuse or abuse your class and its methods. Also, some legitimate calls to your linked list's methods may result in an undefined result. Regardless, in the face of errors, you want your linked list class to be as robust as

possible, to do something reasonable about errors, and to communicate errors back to the calling program. However, you can't anticipate how each user of your linked list class will want the object to behave under adversity. So, often the best thing to do when an error occurs is to throw an exception.

Each of the methods supported by your linked list might throw an exception under certain conditions, and each method might throw a different type of exception than the others. For example,

objectAt

 Throws an exception if the integer passed into the method is less than 0 or

 larger than the number of objects currently in the list.

firstObject

 Throws an exception if the list contains no objects.

indexOf

 Throws an exception if the object passed into the method is not in the list.

But what type of exception should each method throw? Should it be an exception provided with the Java development environment? Or should you roll your own?

Choosing the Exception Type to Throw

When faced with choosing the type of exception to throw, you have two choices:

Use one written by someone else. The Java development environment provides a lot of exception classes that you could use.

Write one of your own.

You should go to the trouble of writing your own exception classes if you answer "yes" to any of the following questions. Otherwise, you can probably get away with using someone else's:

Do you need an exception type that isn't represented by those in the Java development environment?

Would it help your users if they could differentiate your exceptions from those thrown by classes written by other vendors?

Does your code throw more than one related exception?

If you use someone else's exceptions, will your users have access to those exceptions? A similar question is: Should your package be independent and self-contained?

Your linked list class can throw multiple exceptions, and it would be convenient to be able to catch all exceptions thrown by the linked list with one exception handler. Also, if you plan to distribute your linked list in a package, all related code should be packaged together. Thus for the linked list, you should roll your

own exception class hierarchy.

The following diagram illustrates one possible exception class hierarchy for your linked list:

�

	Figure 3.2

Doing Two or More Tasks At Once: Threads

What Is a Thread?

A thread--sometimes called an execution context or a lightweight process--is a single sequential flow of control within a program. You use threads to isolate tasks. When you run one of these sorting applets, it creates a thread that performs the sort operation. Each thread is a sequential flow of control within the same

program (the browser). Each sort operation runs independently from the others, but at the same time.

Customizing a Thread's run Method

The run method gives a thread something to do. Its code implements the thread's running behavior. It can do anything that can be encoded in Java statements: compute a list of prime's, sort some data, perform some animation.

The Thread class implements a generic thread that, by default, does nothing. That is, the implementation of its run method is empty. This is not particularly useful, so the Thread class defines API that lets a Runnable object provide a more interesting run method for a thread.

There are two techniques for providing a run method for a thread:

Subclassing Thread and Overriding run()

Implementing the Runnable Interface

Subclassing Thread and Overriding run()

The first way to customize what a thread does when it is running is to subclass Thread (itself a Runnable object) and override its empty run method so that it does something. Let's look at the SimpleThread class, the first of two classes in this example, which does just that:

Listing 3.10

1

2

3

4

5

6

7

8

9

10

11

12

13

14�public class SimpleThread extends Thread {

 public SimpleThread(String str) {

 super(str);

 }

 public void run() {

 for (int i = 0; i < 10; i++) {

 System.out.println(i + " " + getName());

 try {

 sleep((int)(Math.random() * 1000));

 } catch (InterruptedException e) {}

 }

 System.out.println("DONE! " + getName());

 }

}��

The first method in the SimpleThread class is a constructor that takes a String as its only argument. This constructor is implemented by calling a superclass constructor and is interesting to us only because it sets the Thread's name, which is used later in the program.

The next method in the SimpleThread class is the run method. The run method is the heart of any Thread and where the action of the Thread takes place. The run method of the SimpleThread class contains a for loop that iterates ten times. In each iteration the method displays the iteration number and the name of the Thread, then sleeps for a random interval of up to 1 second. After the loop has finished, the run method prints DONE! along with the name of the thread. That's it for the SimpleThread class.

The TwoThreadsTest class provides a main method that creates two SimpleThread threads: one is named "Jamaica" and the other is named "Fiji".

Listing 3.11

1

2

3

4

5

6�public class TwoThreadsTest {

 public static void main (String[] args) {

 new SimpleThread("Jamaica").start();

 new SimpleThread("Fiji").start();

 }

}��

Implementing the Runnable Interface

Listing 3.12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31�import java.awt.Graphics;

import java.util.*;

import java.text.DateFormat;

public class Clock extends java.applet.Applet implements Runnable {

 private Thread clockThread = null;

 public void start() {

 if (clockThread == null) {

 clockThread = new Thread(this, "Clock");

 clockThread.start();

 }

 }

 public void run() {

	Thread myThread = Thread.currentThread();

 while (clockThread == myThread) {

 repaint();

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e){ }

 }

 }

 public void paint(Graphics g) {

 Calendar cal = Calendar.getInstance();

 Date date = cal.getTime();

 DateFormat dateFormatter = DateFormat.getTimeInstance();

 g.drawString(dateFormatter.format(date), 5, 10);

 }

 public void stop() {

 clockThread = null;

 }

}��

Reading and Writing (but no 'rithmetic)

Often programs need to bring in information from an external source or send out information to an external destination. The information can be anywhere: in a file, on disk, somewhere on the network, in memory, or in another program. Also, it can be of any type: objects, characters, images, or sounds.

�

To bring in information, a program opens a stream on an information source (a file, memory, a socket) and reads the information serially, like this:

	Figure 3.4

Similarly, a program can send information to an external destination by opening a stream to a destination and writing the information out serially, like this:

�

	Figure 3.5

Similarly, a program can send information to an external destination by opening a stream to a destination and writing the information out serially, like this:

Reading�Writing��open a stream

while more information

 read information

close the stream�open a stream

while more information

 write information

close the stream��Overview of I/O Streams

Character Streams

Reader and Writer are the abstract superclasses for character streams in java.io. Reader provides the API and partial implementation for readers -- streams that read 16-bit characters -- and Writer provides the API and partial implementation for writers -- streams that write 16-bit characters.

Subclasses of Reader and Writer implement specialized streams and are divided into two categories: those that read from or write to data sinks (shown in gray in the following figures) and those that perform some sort of processing (shown in white). The figure shows the class hierarchies for the Reader and

Writer classes.

�

�

	Figure 3.5

Most programs should use readers and writers to read and write information. This is because they both can handle any character in the Unicode character set (while the byte streams are limited to ISO-Latin-1 8-bit bytes).

Byte Streams

Programs should use the byte streams, descendants of InputStream and OutputStream, to read and write 8-bit bytes. InputStream and OutputStream provide the API and some implementation for input streams

 (streams that read 8-bit bytes) and output streams (streams that write 8-bit bytes). These streams are typically used to read and write binary data such as images and sounds.

As with Reader and Writer, subclasses of InputStream and OutputStream provide specialized I/O that falls into two categories: data sink streams and processing streams. Figure 3.6 shows the class hierarchies for the byte streams.

�

�

	Figure 3.6

Understanding the I/O Superclasses

Reader and InputStream define similar APIs but for different data types. For example, Reader contains these methods for reading characters and arrays of characters:

 int read()

 int read(char cbuf[])

 int read(char cbuf[], int offset, int length)

InputStream defines the same methods but for reading bytes and arrays of bytes:

 int read()

 int read(byte cbuf[])

 int read(byte cbuf[], int offset, int length)

Also, both Reader and InputStream provide methods for marking a location in the stream, skipping input, and resetting the current position.

Writer and OutputStream are similarly parallel. Writer defines these methods for writing characters and arrays of characters:

 int write(int c)

 int write(char cbuf[])

 int write(char cbuf[], int offset, int length)

And OutputStream defines the same methods but for bytes:

 int write(int c)

 int write(byte cbuf[])

 int write(byte cbuf[], int offset, int length)

All of the streams -- readers, writers, input streams, and output streams—are automatically opened when created. You can close any stream explicitly by calling its close method. Or the garbage collector can implicitly close it, which occurs when the object is no longer referenced.

Listing 3.13 - How to Use File Streams

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18�import java.io.*;

public class Copy {

 public static void main(String[] args) throws IOException {

 File inputFile = new File("input.txt");

 File outputFile = new File("output.txt");

 FileReader in = new FileReader(inputFile);

 FileWriter out = new FileWriter(outputFile);

 int c;

 while ((c = in.read()) != -1)

 out.write(c);

 in.close();

 out.close();

 }

}��

Networking Basics

Computers running on the Internet communicate to each other using either the Transport Control Protocol (TCP) or the User Datagram Protocol (UDP), as this diagram illustrates:

�EMBED Word.Picture.8���

Figure 3.7

When you write Java programs that communicate over the network, you are programming at the application layer. Typically, you don't need to concern yourself with the TCP and UDP layers. Instead, you can use the classes in the java.net package. These classes provide system-independent network communication. However, to decide which Java classes your programs should use, you do need to understand how TCP and UDP differ.

TCP

When two applications want to communicate to each other reliably, they establish a connection and send data back and forth over that connection. This is analogous to making a telephone call. If you want to speak to Aunt Beatrice in Kentucky, a connection is established when you dial her phone number and she answers. You send data back and forth over the connection by speaking to one another over the phone lines. Like the phone company, TCP guarantees that data sent from one end of the connection actually gets to the other end and in the same order it was sent. Otherwise, an error is reported.

TCP provides a point-to-point channel for applications that require reliable communications. The Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and Telnet are all examples of applications that require a reliable communication channel. The order in which the data is sent and received over the network is critical to the success of these applications. When HTTP is used to read from a URL, the data must be received in the order in which it was sent. Otherwise, you end up with a jumbled HTML file, a corrupt zip file, or some other invalid information.

Definition: TCP (Transport Control Protocol) is a connection-based protocol that provides a reliable flow of data between two computers.

UDP

The UDP protocol provides for communication that is not guaranteed between two applications on the network. UDP is not connection-based like TCP. Rather, it sends independent packets of data, called datagrams, from one application to another. Sending datagrams is much like sending a letter through the postal service: The order of delivery is not important and is not guaranteed, and each message is

independent of any other.

Definition: UDP (User Datagram Protocol) is a protocol that sends independent packets of data, called datagrams, from one computer to another with no guarantees about arrival. UDP is not connection-based like TCP.

For many applications, the guarantee of reliability is critical to the success of the transfer of information from one end of the connection to the other. However, other forms of communication don't require such strict standards. In fact, they may be slowed down by the extra overhead or the reliable connection may invalidate the service altogether.

Consider, for example, a clock server that sends the current time to its client when requested to do so. If the client misses a packet, it doesn't really make sense to resend it because the time will be correct when the client receives it on the second try. If the client makes two requests and receives packets from the server out of order, it doesn't really matter because the client can figure out that the packets are out of order and make another request. The reliability of TCP is unnecessary in this instance because it causes performance degradation and may hinder the usefulness of the service.

Another example of a service that doesn't need the guarantee of a reliable channel is the ping command. The purpose of the ping command is to test the communication between two programs over the network. In fact, ping needs to know about dropped or out-of-order packets to determine how good or bad the

connection is. A reliable channel would invalidate this service altogether.

The UDP protocol provides for communication that is not guaranteed between two applications on the network. UDP is not connection-based like TCP. Rather, it sends independent packets of data from one application to another. Sending datagrams is much like sending a letter through the mail service: The order of delivery is not important and is not guaranteed, and each message is independent of

any others.

Understanding Ports

Generally speaking, a computer has a single physical connection to the network. All data destined for a particular computer arrives through that connection. However, the data may be intended for different applications running on the computer. So how does the computer know to which application to forward the

data? Through the use of ports.

Data transmitted over the Internet is accompanied by addressing information that identifies the computer and the port for which it is destined. The computer is identified by its 32-bit IP address, which IP uses to deliver data to the right computer on the network. Ports are identified by a 16-bit number, which TCP and

UDP use to deliver the data to the right application.

In connection-based communication such as TCP, a server application binds a socket to a specific port number. This has the effect of registering the server with the system to receive all data destined for that port. A client can then rendezvous with the server at the server's port, as illustrated here:

�

Figure 3.8

Definition: The TCP and UDP protocols use ports to map incoming data to a particular process running on a computer.

In datagram-based communication such as UDP, the datagram packet contains the port number of its destination and UDP routes the packet to the appropriate application, as illustrated in this figure:

�

Figure 3.9

Port numbers range from 0 to 65,535 because ports are represented by 16-bit numbers. The port numbers ranging from 0 - 1023 are restricted; they are reserved for use by well-known services such as HTTP and FTP and other system services. These ports are called well-known ports. Your applications should not attempt to bind to them.

Networking Classes in the JDK

Through the classes in java.net, Java programs can use TCP or UDP to communicate over the Internet. The URL, URLConnection, Socket, and ServerSocket classes all use TCP to communicate over the network. The DatagramPacket, DatagramSocket, and MulticastSocket classes are for use with UDP.

What Is a URL?

If you've been surfing the Web, you have undoubtedly heard the term URL and have used URLs to access HTML pages from the Web.

It's often easiest, although not entirely accurate, to think of a URL as the name of a file on the World Wide Web because most URLs refer to a file on some machine on the network. However, remember that URLs also can point to other resources on the network, such as database queries and command output.

Definition: URL is an acronym for Uniform Resource Locator and is a reference (an address) to a resource on the Internet.

The following is an example of a URL which addresses the Java Web site hosted by Sun Microsystems:

�

Creating a URL

The easiest way to create a URL object is from a String that represents the human-readable form of the URL address. This is typically the form that another person will use for a URL. For example, the URL for the Gamelan site, which is a directory of Java resources, takes the following form:

http://www.gamelan.com/

In your Java program, you can use a String containing this text to create a URL object:

URL gamelan = new URL("http://www.gamelan.com/");

The URL object created above represents an absolute URL. An absolute URL contains all of the information necessary to reach the resource in question. You can also create URL objects from a relative URL address.

MalformedURLException

Each of the four URL constructors throws a MalformedURLException if the arguments to the constructor refer to a null or unknown protocol. Typically, you want to catch and handle this exception by embedding your URL constructor statements in a try/catch pair, like this:

try {

URL myURL = new URL(. . .)

} catch (MalformedURLException e) {

// exception handler code here

}

Listing 3.14

1

2

3

4

5

6

7

8

9

10

11

12

13

14�import java.net.*;

import java.io.*;

public class ParseURL {

 public static void main(String[] args) throws Exception {

 URL aURL =

 new URL("http://java.sun.com:80/docs/books/tutorial/intro.html#DOWNLOADING");

 System.out.println("protocol = " + aURL.getProtocol());

 System.out.println("host = " + aURL.getHost());

 System.out.println("filename = " + aURL.getFile());

 System.out.println("port = " + aURL.getPort());

 System.out.println("ref = " + aURL.getRef());

 }

}��

Listing 3.12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17�import java.net.*;

import java.io.*;

public class URLReader {

 public static void main(String[] args) throws Exception {

 URL yahoo = new URL("http://www.yahoo.com/");

 BufferedReader in = new BufferedReader(new InputStreamReader(

 yahoo.openStream()));

 String inputLine;

 while ((inputLine = in.readLine()) != null)

 System.out.println(inputLine);

 in.close();

 }

}��

Homework #3

Create a Java application to download the content of the URL http://www.javasoft.com/ and save it to a file with the name content.htm in your local machine.

Create a Java application that reads the HTML file that you download in question 1 and replace all the relative hyperlinks with absolute links and save it to another file, absolute.htm

For example,

will be replaced with

and

will be replaced with

�PAGE �1�

