New York University

School of Continuing Education

Information Technologies Institute

Course Title:	Java for C++ Programmers		Course Number: X.52.9269

Instructor: Nigel Lui					Session: 5	Date: 6/18/1998

Overview of GUIs in Java

Java gives you a class library for basic GUI programming called the Abstract Window Toolkit or AWT. The greatest strength of the AWT is that it is supposed to be platform independent.

The first version of AWT was somewhat primitive, not very well documented, and not particularly powerful. The current version, jdk 1.1, of the AWT is much more useful than the version of the AWT that was in jdk 1.0.

Frames and Windows

In the AWT, a top-level window is called a frame. Frames are example of what are called containers in the AWT. This means a frame can contain other user interface components such as buttons and text fields. In this session, we want to go over the most common methods for working with a frame.

Listing 5.1

1

2

3

4

5

6

7

8

9

10

11�
import java.awt.*;

import java.awt.event.*;

public class FirstAWT extends Frame

{

 public static void main (String [] args)

 {

 FirstAWT f = new FirstAWT ();

 f.show ();

 }

}�
�

To make the above listing more useable

Listing 5.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37�
import java.awt.*;

import java.awt.event.*;

public class CloseableFrame extends Frame

{

 public CloseableFrame()

 {

 addWindowListener(new WindowAdapter());

 setSize(300, 200);

 setTitle(getClass().getName());

 }

}

class WindowAdapter implements WindowListener

{

 // Invoked when a window is in the process of being closed.

 public void windowClosing(WindowEvent e) { System.exit(0); }

 // Invoked when a window is activated.

 public void windowActivated(WindowEvent e) { }

 // Invoked when a window has been closed.

 public void windowClosed(WindowEvent e) { }

 // Invoked when a window is de-activated.

 public void windowDeactivated(WindowEvent e) { }

 // Invoked when a window is de-iconified.

 public void windowDeiconified(WindowEvent e) { }

 // Invoked when a window is iconified.

 public void windowIconified(WindowEvent e) { }

 // Invoked when a window has been opened.

 public void windowOpened(WindowEvent e) { }

}�
�

The CloseableFrame class extends the usual AWT Frame class by including the necessary event handling code so that it will close itself down in response to a user’s request. In addition, any class that extends the CloseableFrame class starts out:

At the default location for a frame (the top left corner)

With a size of 300 by 200 pixels

Displaying a little bar that contains the name of the class

The Frame class itself has only a few methods for changing how frames look and feel: probably the most important are the setTitle method for changing the title bar and the setResizable method, which takes a boolean to determine if a frame is resizable by the user. Of course, through the magic of inheritance most of the methods for working with the size and position of a frame come from the various superclasses of Frame.

	Object

 |

 |------ Component

 | |

 implements -----| |------- Container

 ImageObserver |

 |------ Window

 |

 |------- Frame

 �
�
Figure 5.1

As the API notes indicates, the Component class (which is the ancestor of all non-menu GUI objects) and the Window class, which is the frame’s class parent, are where you usually need to look in order to find the methods to resize and reshape frames. For example, the Window class is where the show method lives that you use to display the component.

Similarly, the setLocation method in the Component class lets you reposition a component. If you make the call

setLocation (int x, int y)

the top left corner is x pixels across and y pixels down (where (0,0) is the top left corner). Note that for a frame, the coordinates are taken relative to the whole screen.

Listing 5.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20�
import java.awt.*;

public class CenteredFrame extends CloseableFrame

{

 public CenteredFrame()

 {

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int screenHeight = d.height;

 int screenWidth = d.width;

 setSize(screenWidth / 2, screenHeight / 2);

 setLocation(screenWidth / 4, screenHeight / 4);

 }

 public static void main(String[] args)

 {

 Frame f = new CenteredFrame();

 f.show();

 }

}�
�

In Java, you usually get system-dependent information via what is called a toolkit. The Toolkit class has a method called getScreenSize that returns the screen size as a Dimension object. (A Dimension object encapsulates a height and a width.)

Displaying Information in a Window

To draw on a frame, you use inheritance and override the paint method. The paint method takes one parameter of type Graphics.

In general, anytime you want to put text messages or graphics into a window, you need to override the paint method whose skeleton was shown in the above code.

A Graphics object remembers a collection of settings for drawing images and text, such as what font you set or the current color. All drawing in Java must go through a Graphics object as does all communication with a printer. Measurement on a Graphics object for screen display is done in pixels. The (0,0) coordinate denotes the top left corner of the component on whose surface you are drawing.

Displaying text (usually called rendering text) is considered a special kind of drawing. For example, a Graphics object has a drawString method that has the following syntax:

drawString (String s, int xCoord, int yCoord)

Listing 5.4

1

2

3

4

5

6

7

8

9

10

11

12�
import java.awt.*;

public class NotHelloWorld1 extends CloseableFrame

{ public void paint(Graphics g)

 { g.drawString("Not a Hello, World program", 75, 100);

 }

 public static void main(String[] args)

 { Frame f = new NotHelloWorld1();

 f.show();

 }

}�
�

Events and the update and paint Functions

Just like Microsoft Windows or X Window programming, a graphical Java program is event driven. The programmer describes what needs to occur when a particular event happens. However, as with all event driven programs, the sequence of events is beyond the control of the programmer since users may perform operations in any order.

For example, parts of an application may need to be redrawn in response to a user action or some other external circumstance. Perhaps the user increased the size of the window or minimized and then restored the application. If the user popped up another window and it covered an existing window and then made it disappear, the application window that was covered is now corrupted and will need to be redrawn. And, of course, when you want Java to display a window, it needs to process the code that specifies how it should draw the initial elements.

Each time Java needs to redraw a window, no matter what the reason, the Java event handler notifies the window. This triggers a call to the update method. The default implementation for update (in the base class for all AWT classes, Component) is to erase the background of the window and then to call paint. In most cases, we can leave update alone and just redefine paint. For example, in the preceding section, we defined the paint method so it will always draw the same message on the screen. This means that even if the frame is covered and then uncovered, the user will always see the same message on the frame since the paint method will be called automatically then.

The update method, like the paint method, takes a single parameter of type Graphics. As with the paint method, you use the Graphics object in the update method to:

Render graphics on the window

Check the current state of the Graphics object

Modify the current Graphics state

Text and Fonts

To display text, you must first select a font. You specify a font by its name, such as “SanSerif”, the style (plain, bold, italic, or bold italic), and the point size.

The following fonts area available on all systems:

SanSerif

Serif

Monospaced

Dialog

DialogInput

These font names are always mapped by Java to fonts that actually exist on the client machine. For example, on a Window system, SanSerif is mapped to Arial.

The Java fonts contains the usual ASCII characters as well as symbols. For example, if you print the character ‘\u2297’ in the Dialog font, then you get a (character. Only those symbols that are defined in the Unicode character set are available.

As you might expect, Font is an object in Java, so we need to create a font via a call to new before you can use it. In this case, Font requires parameters that define its properties in its constructor. The syntax is

Font (String name, int style, int size)

Where one uses something like Font.BOLD in the style parameter in order to get bold.

Here’s the code in a paint method that would let you display at the same location as before: “Not a Hello, World program” in the standard SanSerif font on your system using 14-point bold type

public void paint (Graphics g)

{

 Font f = new Font ("SansSerif", Font.BOLD, 14);

 g.setFont (f);

 g.drawString ("Not a Hell, World program, 75, 100);

}

Listing 5.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52�
import java.awt.*;

public class NotHelloWorld2 extends CloseableFrame

{

 private Font f;

 private Font fi;

 private FontMetrics fm;

 private FontMetrics fim;

 private boolean fontsSet = false;

 public void setFonts(Graphics g)

 { if (fontsSet) return;

 f = new Font("SansSerif", Font.BOLD, 14);

 fi = new Font("SansSerif",

 Font.BOLD + Font.ITALIC, 14);

 fm = g.getFontMetrics(f);

 fim = g.getFontMetrics(fi);

 fontsSet = true;

 }

 public void paint(Graphics g)

 { setFonts(g);

 String s1 = "Not a ";

 String s2 = "Hello, World";

 String s3 = " Program";

 int w1 = fm.stringWidth(s1);

 int w2 = fim.stringWidth(s2);

 int w3 = fm.stringWidth(s3);

 Dimension d = getSize();

 Insets in = getInsets();

 int clientWidth = d.width - in.right - in.left;

 int clientHeight = d.height - in.bottom - in.top;

 int cx = (clientWidth - w1 - w2 - w3) / 2 + in.left;

 int cy = clientHeight / 2 + in.top;

 g.drawRect(in.left, in.top,

 clientWidth - 1, clientHeight - 1);

 g.setFont(f);

 g.drawString(s1, cx, cy);

 cx += w1;

 g.setFont(fi);

 g.drawString(s2, cx, cy);

 cx += w2;

 g.setFont(f);

 g.drawString(s3, cx, cy);

 }

 public static void main(String args[])

 { Frame f = new NotHelloWorld2();

 f.show();

 }

}�
�

There is a getFontList method in the Toolkit class. It returns an array of strings with the font names that are known to be available. But that list is just the list of standard fonts, SanSerif, Serif, Monospaced, and so on. User installed fonts are not reported.

Listing 5.6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21�
import java.awt.*;

public class FontsAvailable extends CloseableFrame

{ public void paint(Graphics g)

 { String [] fontList = getToolkit().getFontList();

 Font defaultFont = g.getFont();

 for (int i = 0; i < fontList.length; i++)

 { g.setFont(defaultFont);

 g.drawString(fontList[i], 20, i * 20 + 40);

 Font f = new Font(fontList[i], Font.PLAIN, 14);

 g.setFont(f);

 g.drawString("ABCabc123\u00C6\u00C7\u2297",

 120, i * 20 + 40);

 }

 }

 public static void main(String[] args)

 { Frame f = new FontsAvailable();

 f.show();

 }

}�
�

Colors

The setColor method call selects a color that is used for all subsequent drawing operations on the graphics context or component. To draw in multiple colors, you select a color, draw, then select another color and draw again.

The setColor method takes a parameter of type Color. You can either pick one of the 13 standard colors listed in Table 5.1 or specify a color by its red, green, and blue components.

Color (byte redness, byte greeness, byte blueness)

Table 5.1

black		green		red		blue		lightGray	white

cyan		megenta		yellow		darkGray	orange		gray

pink�
�

Here are some examples of setting colors:

f.setColor (Color.pink);

f.drawString ("Hello", 75, 100);

f.setColor (new Color(0,128,128));

f.drawString ("World", 75, 125);

To set the background color, you use the setBackground method of the Component class, an ancestor of Frame. In fact, you should set the background before displaying the frame for the first time.

Frame f = new MyFrame ();

f.setBackground (Color.white);

f.show ();

Drawing Shapes

You use the drawLine, drawArc, drawPolyLine, and drawPolygon methods in java.awt.Graphics to draw straight and curved lines on a graphics object. For example, in Java, a polygon is a closed sequence of line segments. The easiest way to draw a polygon in Java is to:

Create a polygon object

Add points to the object

Use the drawPolygon (Polygon p) method described here to draw the polygon

Listing 5.7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46�
import java.awt.*;

public class DrawPoly extends CloseableFrame

{

 public void paint(Graphics g)

 {

 g.translate(getInsets().left, getInsets().top);

 int r = 40; // radius of circle bounding PacMan(R)

 int cx = 50; // center of that circle

 int cy = 100;

 int angle = 30; // opening angle of mouth

 int dx = (int)(r * Math.cos(angle * Math.PI / 180));

 int dy = (int)(r * Math.sin(angle * Math.PI / 180));

 g.drawLine(cx, cy, cx + dx, cy + dy); // lower jaw

 g.drawLine(cx, cy, cx + dx, cy - dy); // upper jaw

 g.drawArc(cx - r, cy - r, 2 * r, 2 * r, angle,

 360 - 2 * angle);

 Polygon p = new Polygon();

 cx = 150;

 int i;

 for (i = 0; i < 5; i++)

 p.addPoint(

 (int)(cx + r * Math.cos(i * 2 * Math.PI / 5)),

 (int)(cy + r * Math.sin(i * 2 * Math.PI / 5)));

 g.drawPolygon(p);

 Polygon s = new Polygon();

 cx = 250;

 for (i = 0; i < 360; i++)

 { double t = i / 360.0;

 s.addPoint(

 (int)(cx + r * t * Math.cos(8 * t * Math.PI)),

 (int)(cy + r * t * Math.sin(8 * t * Math.PI)));

 }

 g.drawPolygon(s);

 }

 public static void main(String args[])

 { Frame f = new DrawPoly();

 f.show();

 }

}�
�

Drawing Rectangles

The drawRect, drawRoundRect, draw3Drect, and drawOval functions render the outlines of rectangles and ellipses (called ovals in the AWT).

Listing 5.8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18�
import java.awt.*;

public class DrawRect extends CloseableFrame

{ public void paint(Graphics g)

 { g.translate(getInsets().left, getInsets().top);

 g.setColor(Color.blue);

 g.drawRect(0, 0, 80, 30);

 g.drawRoundRect(100, 0, 80, 30, 15, 15);

 g.draw3DRect(200, 0, 80, 30, true);

 g.draw3DRect(200, 50, 80, 30, false);

 g.drawOval(0, 100, 80, 30);

 }

 public static void main(String args[])

 { Frame f = new DrawRect();

 f.show();

 }

}�
�

Listing 5.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21�
import java.awt.*;

public class FillRect extends CloseableFrame

{ public void paint(Graphics g)

 { g.translate(getInsets().left, getInsets().top);

 g.drawRect(0, 0, 80, 30);

 g.drawRoundRect(100, 0, 80, 30, 15, 15);

 g.drawOval(0, 100, 80, 30);

 g.setColor(Color.red);

 g.fillRect(0, 0, 80, 30);

 g.fillRoundRect(100, 0, 80, 30, 15, 15);

 g.fill3DRect(200, 0, 80, 30, true);

 g.fill3DRect(200, 50, 80, 30, false);

 g.fillOval(0, 100, 80, 30);

 }

 public static void main(String args[])

 { Frame f = new FillRect();

 f.show();

 }

}�
�

Listing 5.10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42�
import java.awt.*;

public class FillPoly extends CloseableFrame

{ public void paint(Graphics g)

 { g.translate(getInsets().left, getInsets().top);

 int r = 40; // radiuns of circle bounding PacMan(R)

 int cx = 50; // center of that circle

 int cy = 100;

 int angle = 30; // opening angle of mouth

 int dx = (int)(r * Math.cos(angle * Math.PI / 180));

 int dy = (int)(r * Math.sin(angle * Math.PI / 180));

 g.fillArc(cx - r, cy - r, 2 * r, 2 * r, angle,

 360 - 2 * angle);

 Polygon p = new Polygon();

 cx = 150;

 int i;

 for (i = 0; i < 5; i++)

 p.addPoint(

 (int)(cx + r * Math.cos(i * 2 * Math.PI / 5)),

 (int)(cy + r * Math.sin(i * 2 * Math.PI / 5)));

 g.fillPolygon(p);

 Polygon s = new Polygon();

 cx = 250;

 for (i = 0; i < 360; i++)

 { double t = i / 360.0;

 s.addPoint(

 (int)(cx + r * t * Math.cos(8 * t * Math.PI)),

 (int)(cy + r * t * Math.sin(8 * t * Math.PI)));

 }

 g.fillPolygon(s);

 }

 public static void main(String args[])

 { Frame f = new FillPoly();

 f.show();

 }

}�
�

Images

Once images are stored in local files or someplace on the net, you can then read them into Java application and display them on Graphics objects. To read a graphics file into an application, you use a Toolkit object. A Toolkit object can read in GIF and JPEG files.

As you saw before, to get a Toolkit object, use the static getDefaultToolkit method of the Toolkit class. Here is the code to get a local image file:

String name = “blue-ball.gif”;

Image image = Toolkit.getDefaultToolkit().getImage(name);

To get an image file off the net, you must supply the URL. For example,

URL u = new URL (“http://www.youcompany.com/image.gif”);

Image image = Toolkit.getDefaultToolkit().getImage (u);

Listing 5.11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36�
import java.awt.*;

import java.awt.image.*;

import java.net.*;

public class Image1 extends CloseableFrame

{ public Image1()

 { image = Toolkit.getDefaultToolkit().getImage

 ("blue-ball.gif");

 }

 public void paint(Graphics g)

 { Dimension d = getSize();

 Insets in = getInsets();

 g.translate(in.left, in.top);

 int clientWidth = d.width - in.right - in.left;

 int clientHeight = d.height - in.bottom - in.top;

 int imageWidth = image.getWidth(this);

 int imageHeight = image.getHeight(this);

 g.drawImage(image, 0, 0, this);

 for (int i = 0; i <= clientWidth / imageWidth; i++)

 for (int j = 0;

 j <= clientHeight / imageHeight; j++)

 if (i + j > 0)

 g.copyArea(0, 0, imageWidth, imageHeight,

 i * imageWidth, j * imageHeight);

 }

 public static void main(String args[])

 { Frame f = new Image1();

 f.show();

 }

 private Image image;

}�
�

Buffering

If you run the Image1 program on a moderately slow computer, you can watch how it slowly fills the window. When something the user does requires that Java repaint the window (i.e., causes a call to the paint method), the window again slowly fills with the images.

This naive image handling does not work well if you are concerned about performance or if the image arrives slowly over a network connection.

First, you may have noticed that the preceding program sometimes flickers when it redraws the screen. This is because it is the update method, not the paint method, that the AWT calls when it notifies the window that it has to redraw itself. The default action of update is to:

Erase the screen

Then, repaint it.

In our case, erasing the screen is not necessary because we completely cover it with the image. This problem is simple to solve: we just override update by calling paint directly.

void update (Graphics g) {

	paint (g);

}

To speed up the screen refresh, we first build the entire screen image in its own image buffer. We can then paint the screen by drawing just that one buffer into it. That makes the drawing much smoother and faster. The cost is the time and memory needed to fill the buffer. As an added benefit, we only need to recompute the buffer when the user makes the screen area larger.

You create a buffer with the createImage command. To draw into that buffer rather than directly into the window, you need to work with the graphics context that is attached to the buffer. (The graphics context parameter of the update and paint functions is attached to the screen window.) This is done with the getGraphics method call of the Image class, which returns a Graphics object (i.e., a graphics context). Here’s the code for this:

 bufferedImage = createImage(bufferWidth, bufferHeight);

 Graphics bg = bufferedImage.getGraphics();

 bg.drawImage(image, 0, 0, null);

 for (int i = 0; i <= bufferWidth / imageWidth; i++)

 for (int j = 0; j <= bufferHeight / imageHeight; j++)

 if (i + j > 0)

 bg.copyArea(0, 0, imageWidth, imageHeight, i * imageWidth,

 j * imageHeight);

 bg.dispose();

Image Acquisition

The buffering technique you saw works well if you draw lines or text into the buffer. However, it does not work for images. If you try out the code that we have described so far, the paint procedure will probably paint a blank rectangle! The reason for that is subtle but important.

The AWT was written with the assumption that an image may arrive slowly over a network connection. The first call to the drawImage function recognizes that the GIF file has not yet been loaded. Instead of loading the file and returning to the caller when the image is actually loaded, Java spawns a new thread of execution to load the image and then returns to the caller without actually having completed that task.

This is – to say the least – surprising to anyone who expects that a function won’t return until it has done its job. But here the multithread aspect of Java works against your assumptions. What will happen is that Java will run the code in your program in parallel with the code to load the image. Eventually, the image will be loaded and available. Of course, in the meantime, our code has tiled the entire buffer with copies of a blank array.

The solution, of course, is to find out when the GIF image is completely loaded and then tile the buffer. When we were trying to figure out how this is accomplished (and this is a technique you should be prepared to use yourself), we need to look at the Java on-line documentation and then study the ancestors of the Frame class in figure 5.1 on page 2. As figure 5.1 showed, Frame extends Window, which extends Container, which extends Object and implements ImageObserver.

ImageObserver is an interface with a single method, imageUpdate. This is a callback function. That is, the thread that loads the image periodically calls the imageUpdate function of the object that was passed as the last argument of the drawImage call

bg.drawImage (image, 0, 0, this);

That parameter must be of type ImageObserver. Now you know why we passed this as the last parameter. The this object is our application object derived from Frame. Since Frame (indirectly) implements OmageObserver, this is a legal argument.

The default implementation of imageUpdate simply calls update. Now you know why the first program worked and why it flickered more than it should have. During the first call to paint, the first call to drawImage returned immediately, and the first attempt at tiling didn’t actually work. But as soon as the image was acquired, the paint procedure was called again and the screen was rendered correctly.

However, this mechanism fails if we use buffering. The sole reason for using buffering was not to render the screen again with every call to paint. Instead, we must let the initial image acquisition take its course and build up the buffer only when it is finished.

Our code just needs to wait for the image to be complete before it starts filling the buffer with tiled copies of the image. A special class, MediaTracker, makes it easy to program this delay. A media tracker can track the acquisition of one or more images.

You add an image to a tracker object with the following command

Image image = Toolkit.getDefaultToolkit().getImage("blue-ball.gif");

MediaTracker tracker = new MediaTracker(this);

int id = 1;

tracker.addImage(image, id);

You can add as many images as you like. Each of them should have a different ID number, but you can choose any numbering that is convenient. To wait for an image to be loaded completely, you execute the following code:

try { tracker.waitForID(id); }

catch (InterruptedException e) {}

Listing 5.12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62�
import java.awt.*;

import java.awt.image.*;

import java.net.*;

import java.io.*;

public class Image2 extends CloseableFrame

{ public Image2()

 { image = Toolkit.getDefaultToolkit().getImage

 ("blue-ball.gif");

 MediaTracker tracker = new MediaTracker(this);

 tracker.addImage(image, 0);

 try { tracker.waitForID(0); }

 catch (InterruptedException e) {}

 imageWidth = image.getWidth(null);

 imageHeight = image.getHeight(null);

 }

 public void update(Graphics g)

 { paint(g);

 }

 public void paint(Graphics g)

 { Insets in = getInsets();

 g.translate(in.left, in.top);

 Dimension d = getSize();

 int clientWidth = d.width - in.right - in.left;

 int clientHeight = d.height - in.bottom - in.top;

 if (clientWidth > bufferWidth

 || clientHeight > bufferHeight)

 // size has increased

 { bufferWidth = clientWidth;

 bufferHeight = clientHeight;

 bufferedImage = createImage(bufferWidth,

 bufferHeight);

 Graphics bg = bufferedImage.getGraphics();

 bg.drawImage(image, 0, 0, null);

 for (int i = 0; i <= bufferWidth / imageWidth;

 i++)

 for (int j = 0;

 j <= bufferHeight / imageHeight; j++)

 if (i + j > 0) bg.copyArea(0, 0, imageWidth,

 imageHeight, i * imageWidth,

 j * imageHeight);

 bg.dispose();

 }

 g.drawImage(bufferedImage, 0, 0, null);

 }

 public static void main(String args[])

 { Frame f = new Image2();

 f.show();

 }

 private int bufferWidth = 0;

 private int bufferHeight = 0;

 private int imageWidth = 0;

 private int imageHeight = 0;

 private Image image;

 private Image bufferedImage;

}�
�

Printing

Making a simple printout is easy in Java. Just as you use a Graphics object to render text and graphics in a window, you put text and graphics on the printed page by using a special graphics context. Essentially the same code for displaying information on the screen works on a printer.

Since printing contexts and graphics contexts are supposed to work similarly, it shouldn’t come as a surprise that in Java 1.1 a “printing context” is also an instance of a subclass of the Graphics class. The difference is that a printing context must support an additional interface called, naturally enough, PrintGraphics. This means you can use the instanceof operator in your code to determine if you are printing on a usual graphics or a printer context:

if (g instanceof PrintGraphics)

 // printing

else

 // drawing on screen

The PrintGraphics interface is simple: it contains a single method to get a PrintJob object. PrintJob objects encapsulate printing information such as the size of the paper in the printer.

Here’s what you need to do to print:

Get a PrintJob object

Get a Graphics object that implements the PrintGraphics interface

Use that graphics context to draw all text and graphics for the first page

Call dispose on the graphics object to eject the page from the printer

Repeat steps 2 to 4 for the other pages

Call end on the print job object to terminate the print job

Let us look at these steps in details:

You get a PrintJob object by using the getPrintJob method in the Toolkit class. A typical call to get a PrintJob object looks like this:

Frame f = this;

String jobTitle = "Test Page";

Properties props = new Properties ();

PrintJob pJob = getToolKit.getPrintJob (f, jobTitle, props);

The third parameter, of type Properties, is intended to pass system-dependent print parameters to the printer. Properties objects store key/value pairs. For example, the Properties parameter might contain information like

numCopies = 2

which is set with the command

props.put (“numCopies”, “2”);

This particular property works on Solaris but not on Windows. Since print properties are platform dependent, you usually pass null as the third parameter of the call to getPrintJob.

When Java executes the getPrintJob call, it tells the operating system to show a print dialog.

If the user clicks Cancel in the Print dialog box, the call to getPrintJob returns null, not a print job object. The typical code for printing, therefore, starts like this:

PrintJob pJob = getToolKit().getPrintJob(this,jobtitle,null);

if (pJob != null) {

 // print

}

Once you have a PrintJob object, you get the printing context, which is an object of a subclass of Graphics. You obtain that object by making a call to the getGraphics() method in the PrintJob class.

Graphics pg = pJob.getGraphics ();

This call returns the printing context will represent the page on which you want to print. Printing in Java is always page oriented. You need to get a new printing context for each page.

Listing 5.13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52�
import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class PrintingTest extends CloseableFrame

{ public PrintingTest()

 { MenuBar mb = new MenuBar();

 Menu m = new Menu("File");

 MenuItem mi = new MenuItem("Print");

 mi.addActionListener(new ActionListener()

 { public void actionPerformed(ActionEvent evt)

 { print(); }

 });

 m.add(mi);

 mb.add(m);

 setMenuBar(mb);

 setForeground(Color.pink);

 }

 public void print()

 { PrintJob pjob = getToolkit().getPrintJob(this,

 "Printing Test", null);

 if (pjob != null)

 { Graphics pg = pjob.getGraphics();

 if (pg != null)

 { paint(pg);

 pg.dispose(); // flush page

 }

 pjob.end();

 }

 }

 public void paint(Graphics g)

 { g.setFont(new Font("Serif", Font.BOLD, 18));

 int xleft = 96;

 int ybase = 96;

 String message = "Not a Hello, World program";

 g.drawString(message, xleft, ybase);

 int yheight = 96;

 int xwidth = g.getFontMetrics().stringWidth(message);

 g.setColor(Color.yellow);

 g.fillOval(xleft, ybase + 12, xwidth, yheight);

 }

 public static void main(String args[])

 { Frame f = new PrintingTest();

 f.setSize(400, 400);

 f.show();

 }

}�
�

Homework #5

Read the online documentation on the API java.awt

Create a Java application that displays your first name in a frame, when you click on the frame, your application will display last name instead, and when you click again, it will switch back to your first name. Use different fonts, and sizes for displaying your first, and last names.

By using the methods of the class Graphics, create a frame, make the background black, draw a moon (yellow) and a few stars (white) on the frame. Finally, make the stars twinkle (flashing animation).

Create a Java application that displays one of your favorite images (.gif) in a frame, when you click on the image, your application will display another image instead, and when you click again, it will switch back to your first image.

�PAGE �1�

