New York University

School of Continuing Education

Information Technologies Institute
Course Title:
Java for C++ Programmers

Course Number: X.52.9269

Instructor: Nigel Lui

Session: 6
Date: 6/25/1998

Event Handling and User Interface Components

Basics of Event Handling

Any operating system that supports graphical user interfaces must constantly monitoring the environment for events such as keystrokes or mouse clicks. The operating system then reports these events to the programs that are running. Each program then decides what, if anything, to do in response to these events.

Within the limits of the events that the AWT knows about, you completely control how events are transmitted from the event sources (such as buttons or scrollbars) to event listeners. You can designate any object to be an event listener – in practice, you pick an object that can conveniently carry out the response you want to the event.

Event sources have methods that allow you to register event listeners with them. When an event happens to the source, Java sends a notification of that event to all the listener objects that were registered for that event. Which event sources can report to listeners is determined by the nature of the source and by the knowledge that the AWT has about system events related to the source.

To sum up, here’s an overview of how event handling in the JDK 1.1 works:

· A listener object is an instance of a class that implements a special interface called (naturally enough) a listener interface.

· An event source is an object that can register listener objects and send them notifications when events occur. These notifications are methods of the listener interface.

For example,

Button b = new Button (“Clear”);

b.addActionListener (canvas);

Now the canvas object is notified whenever an “action event” occurs in the button. (For buttons, as you might expect, an action event is a button click.)

Code like the above implies that the class to which the canvas listener object belongs must implement the appropriate interface (which in this case is called ActionListener). As with all interfaces in Java, implementing an interface means supplying methods with the right signatures. To implementing an interface means supplying methods with the right signatures. To implement the ActionListener interface, the listener class must have a method (called ActionPreformed) that receives an ActionEvent object as parameter.

There are eleven listener interfaces altogether in the java.awt.event package.

ActionListener

AdjustmentListner

ComponentListener

ContainerListener

FocusListener

ItemListener
KeyListener

MouseListener

MouseMotionListener

TextListener

WindowListener

Obviously, a lot of classes and interfaces to keep track of can be a bit overwhelming. Fortunately, the principle is simple. A class that is interested in receiving events registers itself with the event source. It then gets the events that it asked for.

Capturing Window Events

When the program user tries to close the window, a WindowEvent is generated by the class that represents the window. In our case, that is the FirstCloseableFrame class. We must now have an appropriate listener object and add it to the list of listeners.

f.addWindowListener (x); // what is x?

There are then always two questions you need to ask:

· Who can listen to this event?

· Who is going to listen to this event?

The answer to the first question is always: an object of a class that implements the WindowListener interface.

The simplest way (if not necessarily the most flexible – see below) to answer the second question of who to register to listen to the event is not to make a new class but rather to have the FirstCloseableFrame class itself listen to its own window events. To do this, we must implement the WindowListener interface inside the FirstCloseableFrame class.

class FirstCloseableFrame implements WindowListener {

// …

}

Now the FirstCloseableFrame class can listen to window events. Next, we must make sure that it does listen. Since it happens that the event source and the listener are the same object, we can register the listener with a line like the following:

f.addWindowListener (f);

Actually, this kind of code is more likely to be found in the constructor for the object, not the main method of the program. In this case, the listener object is this as in the following code:

class FirstCloseableFrame implements WindowListener {

public FirstCloseableFrame () {

addWindowListener (this);

show ();

}

}

Listing 6.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
import java.awt.*;

import java.awt.event.*;

public class FirstCloseableFrame extends Frame

 implements WindowListener

{

 public FirstCloseableFrame()

 { setSize(300, 200);

 addWindowListener(this);

 }

 public void windowClosed(WindowEvent e) {}

 public void windowIconified(WindowEvent e) {}

 public void windowOpened(WindowEvent e) {}

 public void windowClosing(WindowEvent e)

 { System.exit(0);

 }

 public void windowDeiconified(WindowEvent e) {}

 public void windowActivated(WindowEvent e) {}

 public void windowDeactivated(WindowEvent e) {}

 public static void main(String[] args)

 { Frame f = new FirstCloseableFrame();

 f.show();

 }

}

Adapter classes

Implementing six methods that don’t do anything is the kind of tedious busy work that nobody likes. To simplify this task, each of the listener interfaces comes with a companion adapter class that implements all the methods in the interface but does nothing with them. For example, the WindowAdapter class has seven do-nothing methods. This means the adapter class automatically satisfies the technical requirements that Java imposes for implementing the associated listener interface.

The AWT has an adapter class for each of the seven listener interfaces that has more than one method. (The remaining four interfaces have only a single method each, so there is no benefit in having adapter class for these interfaces.) A list of the adapter classes follows:

ComponentAdapter

ContainerAdapter

FocusAdapter

KeyAdapter
MouseAdapter

MouseMotionAdapter

WindowAdapter

In the case of the closeable frame, we want to override just one of the seven methods:

class WindowCloser extends WindowAdapter {

void windowClosing (WindowEvent e) {

System.exit (0);

}

}

Now we can register an object of type WindowCloser as the event listener, and the frame class no longer need to implement the listener interface.

class SecondCloseableFrame extends Frame {

public SecondCloseableFrame () {

WindowCloser wc = new WindowCloser ();

addWindowListener (wc);

}

}

Could we have avoided adding the WindowCloser class? That is, could we have added the windowClosing method directly into the SecondCloseableFrame class and have it extend the adapter? No – the SecondCloseableFrame class already extends another class, namely, Frame, and in Java, a class can extend only one other class.

However, there is an alternative that is almost as good. We can make the listener class into an anonymous inner class of the frame.

Listing 6.2

1

2

3

4

5

6

7

8

9

10

11
import java.awt.*;

import java.awt.event.*;

public class CloseableFrame extends Frame

{ public CloseableFrame()

 { addWindowListener(new WindowAdapter() { public void

 windowClosing(WindowEvent e) { System.exit(0); } });

 setSize(300, 200);

 setTitle(getClass().getName());

 }

}

This code does the following:

· Defines a class without a name that extends the WindowAdapter class

· Add a windowClosing method to that anonymous class.

· Inherits the remaining six do-nothing methods from WindowAdapter
· Creates an object of this class. That object does not have a name, either.

· Passes that object to the addWindowListener method.

The JDK 1.1 Event Hierarchy

As you might expect, event handling in Java is object oriented, with all events descending from a common superclass. The superclass for all events is EventObject in the java.util package.

The EventObject class has a subclass AWTEvent, which is the parent of all AWT event classes. You can even add your own custom events by subclassing EventObject or one of the other event classes, as you will see at the end of this session.

Figure 6.1

 EventObject

 |

 AWTEvent

 |

 __

 | | | | |

 ActionEvent AjustmentEvent ComponentEvent ItemEvent TextEvent

 |

 __

 | | | | |

 ContainerEvent FocusEvent InputEvent PaintEvent WindowEvent

 |

 | |

 KeyEvent MouseEvent

When a source object needs to tell a listener object that an event happened, the AWT:

· Calls the appropriate method of the listener interface

· Passes it an object that descends from EventObject
Here’s a list of AWT event types that are actually passed to listeners:

ActionEvent

AdjustmentEvent

ComponentEvent

ContainerEvent
FocusEvent

ItemEvent

KeyEvent
MouseEvent

TextEvent

WindowEvent

An Example: Which button was clicked?

Here’s a simple but typical example of why you need to be able to analyze an event object. A listener object registers itself to multiple buttons so that it can listen to them. Each time any of the buttons is clicked, the listener object then receives an ActionEvent that indicates a button click. That’s nice but, of course, you want to know which button was clicked.

Before we can give you the program that shows you how to identify which button was clicked, we need to explain how to add a button to a frame. Adding buttons to a frame occurs through a call to a method named add. For example,

public class ButtonTest extends CloseableFrame {

public ButtonTest () {

add (new Button (“Yellow”));

add (new Button (“Blue”));

add (new Button (“Red”));

}

}

The add method takes as a parameter the specific component to be added to the frame. Here we create three components of type Button. When constructing the button, you specify the string that you want to appear on the face of the button.

Laying out Buttons

If you add the appropriate main method to create the SampleButtonTest frame given by the little code snippet above, you will end up with only one big button in the frame.

How do we cure the strangeness above? The problem is that we did not tell the frame how to lay out the buttons. It laid them out on top of each other, and made each of them essentially fill the entire frame – that’s why you see only the “Red” button. This is not a great way of laying out a bunch of buttons, but it is easy to tell the frame to do much better than this.

The AWT has a very general and very elegant mechanism for laying out components in a container: these are called layout managers. In our program, the one line that was missing in the fragment above was for the statement that added a layout manager to the frame. We will use one of the most common layout managers in our example; it’s called a flow layout. The JDK then lays out the components automatically following the rules determined by which layout manager you are using, regardless the size of the window.

A flow layout manager like the one we will use in the code that follows simply adds components (buttons, in our case) until the current row is full; then it starts a new row of components (buttons). Moreover, the flow layout manager keeps each set of components centered in an individual row.

public class ButtonTest extends CloseableFrame {

public ButtonTest () {

setLayout (new FlowLayout());

add (new Button("Yellow"));

add (new Button("Blue"));

add (new Button("Red"));

add (new Button("Orange"));

add (new Button("Black"));

add (new Button("White"));

}

}

Getting buttons to Respond

Now that we can add the buttons to a frame, we want to add the code that makes them change the background color when the user clicks on one of them. This task requires implementing the ActionListener interface, which has one method: actionPerformed().

The flowing simple program extends the code above by letting a click on a button change the background color. This requires a call to the setBackground method, followed by a call to repaint in order to make the color actually change. Note the key lines inside the loop inside the constructor for the ButtonTest class look like this for a button named b
b.addActionListener (this);

which adds the frame as a listener to action events for all the buttons. Listing 6.3 is the full code for this example.

Listing 6.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
import java.awt.*;

import java.awt.event.*;

public class ButtonTest extends CloseableFrame

 implements ActionListener

{ public ButtonTest()

 { setLayout(new FlowLayout());

 Button yellowButton = new Button("Yellow");

 add(yellowButton);

 yellowButton.addActionListener(this);

 // who is gonna listen? this frame

 Button blueButton = new Button("Blue");

 add(blueButton);

 blueButton.addActionListener(this);

 Button redButton = new Button("Red");

 add(redButton);

 redButton.addActionListener(this);

 }

 public void actionPerformed(ActionEvent evt)

 { String arg = evt.getActionCommand();

 Color color = Color.black;

 if (arg.equals("Yellow")) color = Color.yellow;

 else if (arg.equals("Blue")) color = Color.blue;

 else if (arg.equals("Red")) color = Color.red;

 setBackground(color);

 repaint();

 }

 public static void main(String[] args)

 { Frame f = new ButtonTest();

 f.show();

 }

}

The ActionListener interface we used in this example is a general-purpose event-handler. It is used in four separate scenarios:

1. When a button is clicked

2. When an item is selected from a list box with a double click

3. When a menu item is selected

4. When the [Enter] key is clicked in a text field

The way to use the ActionListener interface is the same in all situations: the actionPerformed method (which is the only method in ActionListener) takes an object of type ActionEvent as a parameter. This object gives you information about the event that happened via its accessor methods.

You can use the getSource method in the EventObject class to find out the component (that is, the button, list box, menu, or text field) that produced the action event. In the code above, we used the getActionCommand accessor method in the ActionEvent class. This method returns the command string associated with this action. For buttons, it turns out that the method returns the button label.

The method getActionCommand() returns a string that identifies the action. This string is one of the following:

· A button label (when the user clicks a button)

· A menu option (when the user selects a menu item)

· A list item (when the user selects a list item by double-clicking)

· The contents of a text field (when the user clicks [ENTER] in the text field)

Event Handling Summary

The following table shows all AWT listener interfaces, events, and event sources.

Table 6.1

Interface
Methods
Parameter
Events generated by

ActionListener
actionPerformed
ActionEvent

· getActionCommand

· getModifiers
Button

List

MenuItem

TextField

AdjustmentListener
adjustmentValueChanged
AdjustmentEvent

· getAdjustable

· getAdjustmentType

· getValue
Scrollbar

ItemListener
itemStateChanged
ItemEvent

· getItem

· getItemSelectable

· getStateChange
Checkbox

CheckboxMenuItem

Choice

List

TextListener
textValueChanged
TextEvent
TextComponent

ComponentListener
componentMoved

componentHidden

componentResized
ComponentEvent

· getComponent
Component

ContainerListener
componentAdded

componentRemoved
ContainerEvent

· getChild

· getContainer
Container

FocusListener
focusGained

focusLost
FocusEvent

· isTemporary
Component

KeyListener
keyPressed

keyReleased

keyTyped
KeyEvent

· getKeyChar

· getKeyCode

· getKeyModifiersText

· getKeyText

· isActionKey
Component

MouseListener
mousePressed

mouseReleased

mouseEntered

mouseExited

mouseClicked
MouseEvent

· getClickCount

· getX

· getY

· getPoint

· translatePoint

· isPopupTrigger
Component

MouseMotionListener
mouseDragged

mouseMoved

Component

WIndowListener
windowClosing

windowOpened

windowIconified

windowClosed

windowActivated

windowDeactivated
WindowEvent

· getWindow
Window

Menus

AWT supports the kind of pull-down menus that are familiar from Windows and Motif applications. A menu bar on top of the window contains the names of the pull-down menus. Clicking on a name opens the menu containing menu items and submenus. When the user clicks on a menu item, Java closes all menus and sends a message to the program.

Adding menus is straightforward. You create a menu bar.

MenuBar mb = new MenuBar ();

For each menu, you create a menu object.

Menu editMenu = new Menu (“Edit”);

You add menu items, separators, and submenus to the menu object.

Menu pasteItem = new MenuItem (“Paste”);

editMenu.add (pasteItem);

editMenu.addSeparator();

editMenu.add (optionsMenu);

…

When the user selects a menu, Java triggers an action event. You need to install an action event listener for each menu item.

pasteItem.addActionListener (this);

Unfortunately, adding menu items and listeners by hand is incredibly tedious. Here’s some code to build up a typical menu.

Menu m = new Menu (“Edit”);

MenuItem mi = new MenuItem (“Undo”);

mi.addActionListener (this);

m.add (mi);

mi = new MenuItem (“Redo”);

mi.addActionListener (this);

m.add (mi);

mi = new MenuItem (“Cut”);

mi.addActionListener (this);

m.add (mi);

mi = new MenuItem (“Copy”);

mi.addActionListener (this);

m.add (mi);

mi = new MenuItem (“Paste”);

mi.addActionListener (this);

m.add (mi);

menuBar.add (m);

As with buttons, you catch menu selection events in the actionPerformed method. You can tell that an action originated from a menu by verifying, with the instanceof operator, that the type of the event source is a menu item using the instanceof operator. To find which menu item was selected, get the source of the action command with the getSource method, then get the menu label with the getLabel method. Here’s some sample code that does that:

public void actionPerformed (Event evt) {

 if (evt.getSource() instanceof MenuItem) {

 MenuItem mi = (MenuItem) evt.getSource();

 String arg = mi.getLabel ();

 if (arg.equals("Open"))

 // ...

 else if (arg.equals("Save"))

 // ...

 }

 // ...

}

Advanced Menu Topics

Now that you have seen how to build basic menus, let us look at three advanced topics.

· Check box menu items

· Pop-up menus

· Keyboard shortcuts for menus

Check Box Menu Items

A check box menu item is one that can display a check box next to the name. When the user selects the menu item, the item automatically toggles between checked and unchecked. A CheckboxMenuItem does not call actionPerformed when it is selected. If you want to be notified at the moment of selection, you must install an ItemListener object. The itemStateChanged method in this interface is triggered when the check box changes state. If you don’t need to be notified at the exact moment the user selected the item, you can simply use the getState method of the CheckboxMenuItem class to test the current state of the menu item. Use the setState method to set the state.

Pop-up Menus

A pop-up menu is a menu that is not attached to a menu bar but that floats somewhere. When an action of the user means that you will want to pop up a menu, use the show method. You specify the parent component and the location of the pop-up, using the coordinate system of the parent. For example,

PopupMenu popup = new PopupMenu ();

makeMenu (popup, new Object[] { “Cut”, “Copy”, “Paste” } , this);

// …

popup.show (this, x, y);

Usually you write code to pop up a menu when the user clicks a particular mouse button, the so-called pop-up trigger. In Windows, the pop-up trigger is the nonprimary (usually, the right) mouse button. To pop up a menu when the user clicks the pop-up trigger.

· Install a mouse listener

· Add code like the following to the mouse event handler

public void mouseClicked (MouseEvent evt) {

 if (evt.isPopupTrigger())

 popup.show (evt.getComponent(), evt.getX(), evt.getY());

}

This code will show the pop-up menu at the mouse location where the user clicked the pop-up trigger.

Keyboard Shortcuts

It is a real convenience for the experienced user to select menu items by keyboard shortcuts. For example, many users are familiar with the shortcuts CTRL-C, CTRL-X and CTRL-V for the Edit|Copy, Edit|Cut, and Edit|Paste menu items under Windows. In Java, you can specify keyboard shortcuts for menus, provided you restrict yourself to CTRL key combinations such as CTRL+C or CTRL+LEFT.

To make a menu item with a keyboard shortcut, pass an object of type MenuShortcut to the MenuItem constructor. Supply the shortcut key to the MenuShortcut constructor, using the virtual key codes in the class KeyEvent
MenuItem mi1 = new MenuItem (“Copy”, new MenuShortcut(KeyEvent.VK_C));

MenuItem mi2 = new MenuItem (“Paste”, new MenuShortcut(KeyEvent.VK_V));

Listing 6.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137
import java.awt.*;

import java.awt.event.*;

public class MenuTest extends CloseableFrame

 implements ActionListener, ItemListener

{ public MenuTest()

 { MenuBar mbar = new MenuBar();

 mbar.add(makeMenu("File",

 new Object[]

 { "New",

 "Open",

 null,

 "Save",

 "Save As",

 null,

 "Print",

 "Quit"

 },

 this));

 mbar.add(makeMenu("Edit",

 new Object[]

 { "Undo",

 "Redo",

 null,

 new MenuItem("Cut",

 new MenuShortcut(KeyEvent.VK_LEFT)),

 new MenuItem("Copy",

 new MenuShortcut(KeyEvent.VK_C)),

 new MenuItem("Paste",

 new MenuShortcut(KeyEvent.VK_V)),

 makeMenu("Options",

 new Object[]

 { new CheckboxMenuItem("Insert mode"),

 new CheckboxMenuItem("Auto indent"),

 },

 this)

 },

 this));

 mbar.add(makeMenu("Help",

 new Object[]

 { "Index",

 "About",

 },

 this));

 setMenuBar(mbar);

 popup = new PopupMenu();

 makeMenu(popup,

 new Object[]

 { "Cut",

 "Copy",

 "Paste"

 },

 this);

 /* popup menus and keyboard shortcuts don't work in

 an empty frame, so we add some components

 */

 Panel p = new Panel();

 p.add(popup); // add popup menu to frame

 p.addMouseListener(new MouseAdapter()

 { public void mouseClicked(MouseEvent evt)

 { popup.show(evt.getComponent(),

 evt.getX(), evt.getY());

 }

 });

 add(p, "Center");

 add(new TextField("Click below for popup menu"),

 "North");

 }

 private static Menu makeMenu(Object parent,

 Object[] items, Object target)

 { Menu m = null;

 if (parent instanceof Menu)

 m = (Menu)parent;

 else if (parent instanceof String)

 m = new Menu((String)parent);

 else

 return null;

 for (int i = 0; i < items.length; i++)

 { if (items[i] instanceof String)

 { MenuItem mi = new MenuItem((String)items[i]);

 if (target instanceof ActionListener)

 mi.addActionListener((ActionListener)target);

 m.add(mi);

 }

 else if (items[i] instanceof CheckboxMenuItem

 && target instanceof ItemListener)

 { CheckboxMenuItem cmi

 = (CheckboxMenuItem)items[i];

 cmi.addItemListener((ItemListener)target);

 m.add(cmi);

 }

 else if (items[i] instanceof MenuItem)

 { MenuItem mi = (MenuItem)items[i];

 if (target instanceof ActionListener)

 mi.addActionListener((ActionListener)target);

 m.add(mi);

 }

 else if (items[i] == null)

 m.addSeparator();

 }

 return m;

 }

 public void actionPerformed(ActionEvent evt)

 { MenuItem c = (MenuItem)evt.getSource();

 String arg = c.getLabel();

 if(arg.equals("Quit"))

 System.exit(0);

 else if (arg.equals("About"))

 popup.show(this, 100, 100);

 else System.out.println(arg);

 }

 public void itemStateChanged(ItemEvent evt)

 { CheckboxMenuItem c

 = (CheckboxMenuItem)evt.getSource();

 System.out.print(c.getLabel() + " ");

 if (!c.getState()) System.out.print("de");

 System.out.println("selected");

 }

 public static void main(String args[])

 { Frame f = new MenuTest();

 f.show();

 }

 private PopupMenu popup;

}

AWT UI Components
The root of the AWT components is the class Component, which provides basic display and event handling features. The classes Container, Canvas, TextComponent, and many of the other UI components inherit from the Container class are object that can contain other AWT components – the Panel and Window classes, in particular. Note that the java.applet.Applet class, even though it lives in its own package, inherits from Panel, so your applets are an integral part of the hierarchy of components in the AWT system.

A partial AWT class hierarchy

Labels

The simplest form of UI component is the label, which is, effectively, a text string that you can use to label other UI components. Labels are not editable; they just label other components on the screen.

The advantages that a label has over an ordinary text string (that you’d draw using drawString() in the paint() method) are

1. You don’t have to redraw labels yourself. Labels are an AWT element and AWT keeps track of drawing them.

2. Labels follow the layout of the panel in which they’re contained and can be aligned with other UI components. Panel layout is determined by the layout manager, which you’ll learn about next week.

To create a label, use one of the following constructors

1. Label () create an empty label, with its text aligned left.

2. Label (String) creates a label with the given text string, also aligned left.

3. Label (String, int) creates a label with the given text string and the given alignment. The available alignment numbers are stored in class variables in Label, making them easier to remember: Label.RIGHT, Label.LEFT, and Label.CENTER.

Listing 6.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
import java.awt.*;

public class LabelTest extends CloseableFrame {

 public LabelTest() {

 setFont(new Font ("Helvetica", Font.BOLD, 14));

 setLayout(new GridLayout(3,1));

 add(new Label("aligned left", Label.LEFT));

 add(new Label("aligned center", Label.CENTER));

 add(new Label("aligned right", Label.RIGHT));

 }

 public static void main (String [] args) {

 Frame l = new LabelTest ();

 l.show ();

 }

}

getText()
Returns a string containing this label’s text

setText()
Change the text of this label

getAlignment()
Returns an integer representing the alignment of this label:

0 is Label.LEFT
1 is Label.CENTER
2 is Label.RIGHT

setAlignment(int)
Changes the alignment of this label to the given integer – use the class variables listed in the getAlignment() method

Buttons

The second user interface component to explore is the button. Buttons are simple UI components that trigger some action in your interface when they are pressed. For example, a calculator might have buttons for each number and operator, or a dialog box might have buttons for OK and Cancel.

To create a button, use one of the following constructors:

1. Button () creates an empty button with no label.

2. Button (String) creates a button with the given string as a label.

Listing 6.6

1

2

3

4

5

6

7

8

9

10

11
import java.awt.*;

public class ButtonTest extends CloseableFrame {

 public ButtonTest () {

 add(new Button("Rewind"));

 add(new Button("Play"));

 add(new Button("Fast Forward"));

 add(new Button("Stop"));

 }

}

Check Boxes

Check boxes are user-interface components that have two states: on and off. Unlike buttons, check boxes usually don’t trigger direct action in a UI, but instead are used to indicate optional features of some other action.

Check boxes can be used in two ways

1. Non exclusive: Given a series of check boxes, any of them can be selected

2. Exclusive: Given a series, only one check box can be selected at a time. (Radio Buttons)

Non-exclusive check boxes can be created by using the Checkbox class. You can create a check box using one of the following constructors:

1. Checkbox () create an empty check box, unselected.

2. Checkbox (String) create a check box with the given string as a label.

3. Checkbox (String, null, boolean) creates a check box that is either selected or deselected based on whether the boolean argument is true of false, respectively.

Listing 6.7
1

2

3

4

5

6

7

8

9

10

11

1213
import java.awt.*;

public class CheckboxTest extends CloseableFrame {

 public CheckboxTest () {

 setLayout(new FlowLayout(FlowLayout.LEFT));

 add(new Checkbox("Shoes"));

 add(new Checkbox("Socks"));

 add(new Checkbox("Pants"));

 add(new Checkbox("Underwear", null, true));

 add(new Checkbox("Shirt"));

 }

}

getLabel()
Returns a string containing this check box’s label

setLabel(String)
Changes the text of the check box’s label

getState()
Returns true of false, based on whether the check box is selected or not

setState(boolean)
Changes the check box’s state to selected (true) or unselected (false)

Radio Buttons

Radio buttons have the same appearance as check boxes, but only one in a series can be selected at a time. To create a series of radio buttons, first create an instance of CheckboxGroup:

CheckboxGroup cbg = new CheckboxGroup ();

Listing 6.8
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
import java.awt.*;

public class CheckboxGroupTest extends CloseableFrame {

 public CheckboxGroupTest () {

 setLayout(new FlowLayout(FlowLayout.LEFT));

 CheckboxGroup cbg = new CheckboxGroup();

 add(new Checkbox("Red", cbg, false));

 add(new Checkbox("Blue", cbg, false));

 add(new Checkbox("Yellow", cbg, false));

 add(new Checkbox("Green", cbg, true));

 add(new Checkbox("Orange", cbg, false));

 add(new Checkbox("Purple", cbg, false));

 }

}

Choice Menus

The choice menu is a more complex UI component than labels, buttons, or check boxes. Choice menus are pop-up (or pull-down) menus from which you can select an item. The menu then displays that choice on the screen.

To create a choice menu, create an instance of the Choice class and then use the addItem() method to add individual items to it in the order in which they should appear. Finally, add the entire choice menu to the panel in the usual way. Here’s a simple program that builds a choice menu of fruits:

Listing 6.9
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
import java.awt.*;

public class ChoiceTest extends CloseableFrame {

 public ChoiceTest () {

 Choice c = new Choice();

 c.addItem("Apples");

 c.addItem("Oranges");

 c.addItem("Strawberries");

 c.addItem("Blueberries");

 c.addItem("Bananas");

 add(c);

 }

}

getItem(int)
Returns the string item at the given position

countItems()
Return the number of items in the menu

getSelectedIndex()
Returns the index position of the item that’s selected

getSelectedItem()
Returns the currently selected item as a string

select(int)
Selects the item at the given position

select(String)
Selects the item with the given string

Text Fields

Unlike the UI components up to this point, which enable you to select only among several options to perform an action, text fields allow you to enter and edit text. Text fields are generally only a single line and do not have scrollbars; text areas, which you’ll learn about later this chapter, are better for larger amounts of text.

Text fields are different from labels in that they can be edited; labels are good for just displaying text; text fields for getting text input from the user.

To create a text field, use one of the following constructors:

1. TextField () creates an empty TextField that is 0 characters wide (it will be resized by the current layout manager).

2. TextField (int) creates an empty text field. The integer argument indicates the minimum number of characters to display.

3. TextField (String) creates a text field initialized with the given string. The field will be automatically resized by the current layout manager.

4. TextField (String, int) creates a text field some number of characters wide (the integer argument) containing the given string. If the string is longer than the width, you can select and drag portions of the text within the field, and the box will scroll left of right.

 Listing 6.9
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
import java.awt.*;

public class TextFieldTest extends CloseableFrame {

 public TextFieldTest() {

 setLayout(new GridLayout(3,2,5,15));

 add(new Label("Enter your name:"));

 add(new TextField("your name here",45));

 add(new Label("Enter your phone number:"));

 add(new TextField(12));

 add(new Label("Enter your password:"));

 TextField t = new TextField(20);

 t.setEchoCharacter('*');

 add(t);

 }

}

getText()
Returns the text this text field contains (as a String)

setText(String)
Puts the given text string into the field

getColumns()
Returns the width of this text field

select (int, int)
Selects the text between the two integer position

selectAll()
Selects all the text in the field

isEditable()
Returns true or false based on whether the text is editable

setEditable(boolean)
true (the default) enables text to be edited; false freezes the text

setEchoChar()
Sets the echo character for this text field.

getEchoChar()
Returns the character used for masking input

echoCharIsSet()
Return true of false based on whether the field has a masking character

Homework #6

1. Read the online documentation on the API java.awt, and java.awt.event, again!
2. Create a Java application with a TextField, a Label, and a Button; the user can type into the TextField and the text will be displayed in the Label when the user clicks on the Button or hits the [ENTER] key in the TextField.

3. Create a GUI front-end for your Homework #4 Q3, the client/server socket application again!
Component

Button

TextComponent

Container

Canvas

Window

Panel

TextField

Frame

Dialog

Applet

1
1

